Antioxidant enzyme activities in chili plants in response to the infection of Pepper yellow leaf curl Indonesia virus
Main Article Content
Abstract
Chili pepper is an important agricultural crop but is highly vulnerable to viral diseases, including Pepper yellow leaf curl Indonesia virus (PepYLCIV). This study investigated the biochemical response of chili plants to PepYLCIV infection by examining changes in antioxidant enzyme activities: peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX). The effects of sample handling methods on enzyme activity measurements were also evaluated. The experiment was conducted in a biosafety greenhouse using a factorial design with four replications. The treatments included two chili varieties (Bara and Bonita), plant condition (healthy and PepYLCIV-infected), sample types (fresh leaf tissue and frozen leaf tissue stored at −80 °C), and seven sampling times (1, 3, 5, 7, 14, 21, and 28 days post-inoculation). Result showed that POD activity was significantly higher in infected plants than in healthy plants, whereas CAT and APX activities showed no significant differences between plant health conditions. Fresh samples consistently exhibited higher enzyme activity than frozen samples. POD and CAT activities peaked at 28 days post-inoculation, while APX activity was the highest at 5 days post-inoculation and fluctuated over time. These findings highlight the importance of considering infection status, sampling time, and sample processing when evaluating antioxidant enzymes in plant–virus interaction studies.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Ayu DK, Maharijaya A, Syukur M, & Hidayat SH. 2021. Resilience response to yellow leaf curl disease and identification of resistance gene analogs (RGA) in pepper (Capsicum annuum). Biodiversitas. 22(11): 4731–4739. https://doi.org/10.13057/biodiv/d221104
Baker A, Lin CC, Lett C, Karpinska B, Wright MH, & Foyer CH. 2023. Catalase: A critical node in the regulation of cell fate. Free Radic. Biol. Med. 199: 56–66. https://doi.org/10.1016/j.freeradbiomed.2023.02.009
Bhattacharjee S. 2019. Reactive Oxygen Species in Plant Biology. Springer. New Delhi. https://doi.org/10.1007/978-81-322-3941-3
de Oliveira FK, Santos LO, & Buffon JG. 2021. Mechanism of action, sources, and application of peroxidases. Food Res. Int. 143: 110266. https://doi.org/10.1016/j.foodres.2021.110266
Dwivedi N, Johny L, Goel M, & Tirkey DS. 2022. Evaluation of biochemical responses in pepper genotypes inoculated with Pepper leaf curl virus. Indian Phytopathol. 75: 1151–1157. https://doi.org/10.1007/s42360-022-00551-3
El-Argawy E & Adss IA. 2016. Quantitative gene expression of peroxidase, polyphenoloxidase and catalase as molecular markers for resistance against Ralstonia solanacearum. Am. J. Mol. Biol. 6(2): 88–100. https://doi.org/10.4236/ajmb.2016.62010
Faizah R, Sujiprihati S, Syukur M, & Hidayat SH. 2012. Ketahanan biokimia tanaman cabai terhadap Begomovirus penyebab penyakit daun keriting kuning [Biochemical resistance of chilipepper to Begomovirus, the causal agent of pepper yellow leaf curl disease]. J. Fitopatol. Indones. 8(5): 138–144. https://doi.org/10.14692/jfi.8.5.138
Ganefianti DW. 2010. Genetik Ketahanan Cabai terhadap Begomovirus Penyebab Penyakit Daun Keriting Kuning dan Arah Pemuliaannya [Genetics of Resistance on Chili pepper to Yellow Leaf Curl Begomovirus and Strategy Breeding]. Disertasi. Institut Pertanian Bogor.Bogor
Ganefianti DW, Hidayat SH, & Syukur M. 2017. Susceptible phase of chili pepper due to yellow leaf curl Begomovirus infection. Int. J. Adv. Sci. Eng. Inf. Technol. 7(2): 594–601.
Hakmaoui A, Pérez-Bueno ML, García-Fontana B, Camejo D, Jiménez A, Sevilla F, & Barón M. 2012. Analysis of the antioxidant response of Nicotiana benthamiana to infection with two strains of Pepper mild mottle virus. J. Exp. Bot. 63(15): 5487–5496. https://doi.org/10.1093/jxb/ers212
Hartmann J & Asch F. 2019. Extraction, storage duration, and storage temperature affect the activity of ascorbate peroxidase, glutathione reductase, and superoxide dismutase in rice tissue. Biology. 8(4): 70. https://doi.org/10.3390/biology8040070
Hasanuzzaman M, Bhuyan MHMB, Zulfiqar F, Raza A, Mohsin SM, Al Mahmud J, Fujita M, & Fotopoulos V. 2020. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants. 9(8): 681. https://doi.org/10.3390/antiox9080681
Hidayat S, Rusli E, & Aidawati N. 1999. Penggunaan primer universal dalam polymerase chain reaction untuk mendeteksi virus gemini pada cabe [Use of universal primers in polymerase chain reaction to detect geminiviruses in chili peppers]. Prosiding Seminar Ilmiah dan Kongres Nasional XV Perhimpunan Fitopatologi Indonesia XV. pp. 16-18. Universitas Jenderal Soedirman. Purwokerto.
Inoue-Nagata AK, Nagata T, de Ávila AC, & Giordano LdB. 2007. A reliable Begomovirus inoculation method for screening Lycopersicon esculentum lines. Hortic. Bras. 25(3): 447–450. https://doi.org/10.1590/s0102-05362007000300024
Jaiswal N, Singh M, Dubey RS, Venkataramanappa V, & Datta D. 2013. Phytochemicals and antioxidative enzymes defence mechanism on occurrence of yellow vein mosaic disease of pumpkin (Cucurbita moschata). 3 Biotech. 3(4): 287–295. https://doi.org/10.1007/s13205-012-0100-6
Jamsari J & Pedri J. 2013. Complete nucleotide sequence of DNA a-like genome and DNA-β of monopartite Pepper yellow leaf curl virus, a dominant Begomovirus infecting Capsicum annuum in West Sumatera Indonesia. Asian J. Plant Pathol. 7(1): 1–14. https://doi.org/10.3923/ajppaj.2013.1.14
Jovanović SV, Kukavica B, Vidović M, Morina F, & Menckhoff L. 2018. Class III Peroxidases: Functions, Localization and Redox Regulation of Isoenzymes. In: Gupta DK, Palma JM, & Corpas FJ (Eds.). Antioxidants and Antioxidant Enzymes in Higher Plants. pp. 269–300. Springer International Publishing AG. Switzerland. https://doi.org/10.1007/978-3-319-75088-0_13
Kingkampang H, Teerarak M, Kramchote S, Techawongstien S, & Suwor P. 2020. Phenols and peroxidase activity in Pepper yellow leaf curl Thailand virus (PepYLCThV) resistant and susceptible chili (Capsicum annuum L.) genotypes. Int. J. Agric. Technol. 16(4): 845–854.
Koeda S, Homma K, Tanaka Y, Onizaki D, Kesumawati E, Zakaria S, & Kanzaki S. 2018. Inoculation of Capsicums with Pepper Yellow Leaf Curl Indonesia virus by combining agroinoculation and grafting. Hortic J. 87(3): 364–371. https://doi.org/10.2503/hortj.OKD-137
Lester GE, Hodges DM, Meyer RD, & Munro KD. 2004. Pre-extraction preparation (fresh, frozen freeze-dried, or acetone powdered) and long-term storage of fruit and vegetable tissues: Effects on antioxidant enzyme zctivity. J. Agric. Food Chem. 52(8): 2167–217. https://doi.org/10.1021/jf030713b
Li R, Salih S, Hurtt S. 2004. Detection of Geminiviruses in sweetpotato by Polymerase Chain Reaction. Plant Dis. 88(12): 1347–1351. https://doi.org/10.1094/PDIS.2004.88.12.1347
Maruta T & Ishikawa T. 2018. Ascorbate peroxidases: Crucial roles of antioxidant enzymes in plant stress responses. In: Hossain MA, Munné-Bosch S, Burritt D, Diaz-Vivancos P, Fujita M, & Lorence A (Eds.). Ascorbic Acid in Plant Growth, Development and Stress Tolerance. pp. 111–127. Springer International Publishing AG. Switzerland. https://doi.org/10.1007/978-3-319-74057-7_4
Nakano Y & Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22(5): 867–880. https://doi.org/10.1093/oxfordjournals.pcp.a076232
Negi NP, Shrivastava D, Shekhar S, Sharma V, & Sarin NB. 2016. Simultaneous overexpression of CuZnSOD and cAPX from Arachis hypogaea leads to salinity stress tolerance in tobacco. In Vitro Cell. Dev. Biol. -Plant. 52: 484–491. https://doi.org/10.1007/s11627-016-9764-7
Neliana IR, Soleha W, Suherman, Darsono N, Harmoko R, Sawitri WD, & Sugiharto B. 2024. Alteration of photosynthetic and antioxidant gene expression in sugarcane infected by multiple mosaic viruses. Int. J. Plant Biol. 15(13): 757–768. https://doi.org/10.3390/ijpb15030055
Neriya Y, Izumi R, Wilisiani F, Hartono S, Wirya GNAS, Nishigawa H, & Natsuaki T. 2020. Complete genome sequence of a Pepper yellow leaf curl Indonesia virus isolated from tomato in Bali, Indonesia. Microbiol. Resour. Announc. 9(25): e00486-20. https://doi.org/10.1128/mra.00486-20
Paradisa YB, Sulandari S, Hartono S, Somowiyarjo S, Windarningsih M, Sari DWK, & Handayani CR. 2022. Recombinant antibody production by cloning of Pepper yellow leaf curl Indonesia virus (PepYLCIV) coat protein gene. J. Trop. Plant Pests Dis. 22(1): 1–13. https://doi.org/10.23960/jhptt.1221-13
Paradisa YB, Hidayat SH, Saputra A, Wahyuni, Hartati NS, Prananingrum P, Herliana L, Chairunisa, Zainuddin IM, Indrayani S, Sulistyowati Y, Perdani AY, Fidriyanto R, & Adi EBM. 2024. Evaluation of three different DNA extraction methods for the detection of Pepper yellow leaf curl virus (PepYLCV) by Polymerase Chain Reaction. IOP Conf. Ser.: Earth Environ. Sci. 1377: 012106. https://doi.org/10.1088/1755-1315/1377/1/012106
Rajput VD, Harish, Singh RK, Verma KK, Sharma L, Quiroz-Figueroa FR, Meena M, Gour VS, Minkina T, Sushkova S, & Mandzhieva S. 2021. Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress. Biology. 10(4): 267. https://doi.org/10.3390/biology10040267
Amoako S, Yahaya A, & Sarfo JK. 2015. Catalase activity of cassava (Manihot esculenta) plant under African cassava mosaic virus infection in Cape coast, Ghana. Afr. J. Biotechnol. 14(14): 1201–1206. https://doi.org/10.5897/AJB2014.13864
Sahoo A & Tiwari S. 2022. Antioxidants and antioxidative enzymes as potential biomarkers for assessing stress in plants. Int. J. Plant Environ. 8(2): 95–105. https://doi.org/10.18811/ijpen.v8i02.01
Salsinha YCF, Rini DS, Indradewa D, Rachmawati D, Alam T, & Purwestri YA. 2023. Exogenously applied Casuarina equisetifolia leaf extracts act as an osmoprotectant on proline accumulation under drought stress in local rice from Indonesia. Front. Plant Sci. 14: 1210241. https://doi.org/10.3389/fpls.2023.1210241
Sandra YMA, Maharijaya A, & Sobir. 2022. Screening of resistance to geminivirus and whitefly in pepper. Euphytica. 218: 155. https://doi.org/10.1007/s10681-022-03109-6
Santosa AI, Irbati AH, Pratiwi GNC, Surwadinata A, Laeshita P, Dharma KS, Jaya RS, Andriyani AL, A’yun CQ, & Fatika CNS. 2024. Updates on hosts and distribution of Pepper yellow leaf curl Indonesia virus and Squash leaf curl China virus in Central Java Province, Indonesia. JIP. 21(1): 11–20. https://doi.org/10.31849/jip.v21i1.18856
Sayekti TWDA, Syukur M, Hidayat SH, & Maharijaya A. 2021. Morphological response and genetic variability of four species of chili pepper (Capsicum spp.) under infection of Pepper yellow leaf curl virus. Biodiversitas. 22(11): 4758–4765. https://doi.org/10.13057/biodiv/d221107
Shigeto J & Tsutsumi Y. 2016. Diverse functions and reactions of class III peroxidases. New Phytol. 209(4): 1395–1402. https://doi.org/10.1111/nph.13738
Simons TJ & Ross AF. 1971. Metabolic changes associated with systemic induced resistance to Tobacco mosaic virus in samsun nn tobacco. Phytopathology. 61: 293–300. https://doi.org/10.1094/phyto-61-293
Sran TS, Jindal SK, Sharma A, & Chawla N. 2023. Genetics of novel leaf curl virus disease resistant pepper genotypes and antioxidative profile analysis of their progenies. Sci. Hortic. 308: 111563. https://doi.org/10.1016/j.scienta.2022.111563
Sulandari S. 2004. Karakterisasi Biologi, Serologi dan Analisis Sidik Jari DNA Virus Penyebab Penyakit Daun Keriting Kuning Cabai [Biological Characterization, Serology, and DNA Fingerprint Analysis of the Virus Causing Chili Yellow Leaf Curl Disease]. Dissertation. Institut Pertanian Bogor. Bogor.
Wahyono A, Murti RH, Hartono S, Nuringtyas TR, Wijonarko A, Mulyantoro M, Firmansyah D, Afifuddin A, & Purnama ICG. 2023. Current status and complexity of three Begomovirus species in pepper plants in lowlands and highlands in Java Island, Indonesia. Viruses. 15(6): 1278. https://doi.org/10.3390/v15061278
Xu Y, Zhang S, Zhang M, Jiao S, Guo Y, & Jiang T. 2024. The role of reactive oxygen species in plant-virus interactions. Plant Cell Rep. 43: 197. https://doi.org/10.1007/s00299-024-03280-1
Yang T, Qiu L, Huang W, Xu Q, Zou J, Peng Q, Lin H, & Xi D. 2020. Chilli veinal mottle virus HCPro interacts with catalase to facilitate virus infection in Nicotiana tabacum. J. Exp. Bot. 71(18): 5656–5668. https://doi.org/10.1093/jxb/eraa304
Zahir S, Zhang F, Chen J, & Zhu S. 2021. Determination of oxidative stress and antioxidant enzyme activity for physiological phenotyping during heavy metal exposure. In: Pan X & Zhang B. (Eds.). Environmental Toxicology and Toxicogenomics: Principles, Methods, and Applications. pp. 241–249. Humana. New York. https://doi.org/10.1007/978-1-0716-1514-0_17
Zhao H, Sun X, Xue M, Zhang X, & Li Q. 2016. Antioxidant enzyme responses induced by whiteflies in tobacco plants in defense against aphids: Catalase may play a dominant role. PLoS One. 11(10): e0165454. https://doi.org/10.1371/journal.pone.0165454